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A physiologically based continuum model of brain dynamics is extended to incorporate arbitrary numbers of
structures and neural populations, multiple outgoing fields of activity from a single population of neurons to
various targets, improved treatment of converging or diverging projections and mesoscopic structure, and
generalized connections to quantities observable via electroencephalography and other methods. The results are
applied to study the corticothalamic system, predicting an intracortical resonance that leads to enhancements of
electroencephalographic activity in the gamma ��30 Hz� range. This resonance involves feedback loops in-
corporating slow, short-range inhibitory fibers.
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I. INTRODUCTION

Physiologically based continuum modeling of brain dy-
namics has progressed significantly since its inception in the
1970s �1–10�. Recent work in this area has resulted in nu-
merous quantitatively verified predictions of brain electrical
activity, including electroencephalogram �EEG� time series
�11–13�, spectra �10–19�, coherence and correlations �20�,
evoked response potentials �ERPs� �12,13�, and seizure dy-
namics �11,13�. Inversion of the model predictions has also
yielded estimates of underlying physiological parameters and
their variations across the brain, in different states of arousal,
and disorders �11,21–23�.

Despite its many successes continuum modeling is still
restricted in many ways. For example �i� it has included only
certain brain structures �mainly the cortex and thalamus�, �ii�
little mesoscopic structure, such as is involved in neural ar-
borization, has been incorporated, and �iii� widely converg-
ing or diverging projections have not been adequately
treated. In addition, �iv� it has mostly neglected anisotropies,
�v� approximately periodic structures, such as those seen in
the visual cortex have not been incorporated �24,25�, �vi�
treatment of parameter dynamics, including some details of
neurotransmitter kinetics, facilitation and related processes,
neuromodulator dynamics, activation systems, etc., has not
been systematic, �vii� development and learning have not
been incorporated, and �viii� geometry and boundary condi-
tions are only approximate.

The purpose of this paper is to generalize our analysis to
incorporate the first three of the points mentioned above �it is
not feasible to address all eight in a single paper�. Specifi-
cally, �i� an arbitrary number of structures and neural popu-
lations are included rather than the limited numbers consid-
ered in previous works, and �ii� the analysis enables each
projection �including arborization effects� between popula-
tions to be treated separately via propagator techniques,
thereby removing arbitrary implicit assumptions of equal
ranges of whole classes of projections �10,11,13�. Problems
that require this more general analysis include understanding
the activation systems of the brain that govern arousal and
attention �hence, cognitive questions, ERPs, and sleep�, ex-
ploration of the mechanisms of gamma oscillations at fre-

quencies above 30 Hz, study of the effects of the multi-
layered structure of the cortex, investigation of the role of
structures such as the basal ganglia and limbic system in
brain dynamics and disorders �Parkinson’s disease, etc.�, and
deeper understanding of seizure dynamics.

In generalizing our earlier analysis, the main aims are to
obtain a model that is tractable �especially via a formulation
in terms of differential equations�, backward compatible with
our earlier work in appropriate limits, physiologically justi-
fiable, and relies on parameters that are experimentally mea-
surable.

In Sec. II we make a number of generalizations of our
previous theory, as outlined above. These are based on physi-
ological and anatomical insights, and aim for mathematical
tractability in the final equations. This leads to a formulation
in terms of propagators for waves of neural activity. Propa-
gators have been used in brain dynamics contexts before
�e.g., �7,14��, but not so extensively; they yield the most
convenient formulation in the present case. General proper-
ties of the model are discussed in Secs. III and IV, including
its steady-state behavior and linear responses. Specific illus-
trative applications to the corticothalamic system and genera-
tion of gamma oscillations are made in Sec. V, where an
additional intracortical gamma resonance is found.

II. THEORY

In this work �and our previous ones� we make a con-
tinuum approximation in which neural properties are aver-
aged over linear scales of a tenth of a millimeter or so: suf-
ficient to contain large numbers of neurons, but small enough
to resolve fine structures in the brain. There are several main
aspects to the theory, each of which is dealt with in a sub-
section below, including its physiological basis: �i� synaptic
and dendritic dynamics and summation of synaptic inputs to
determine potentials at the neural cell body �soma�, �ii� gen-
eration of pulses at the axonal hillock, and �iii� propagation
of pulses within and between neural populations. In each
subsection, we first formulate the relevant physics in terms
of the physiology, explain the main features of the resulting
equations, and discuss their limitations. We then show how
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tractable differential-equation forms can be obtained, show
how useful approximations can be made in certain cases, and
discuss how the equations reduce to those we have intro-
duced in previous work in the appropriate limits. Where re-
sults from a previous analysis are used directly, the full jus-
tification is not repeated here.

A. Synaptodendritic dynamics and the soma potential

We assume that the brain contains multiple populations of
neurons, distinguished by a subscript a, which simulta-
neously labels both the structure in which a given population
lies �e.g., a particular nucleus� and the type of neuron �e.g.,
interneuron, pyramidal cell�. The continuum soma potential
Va is the sum of contributions Vab arriving as a result of
activity at each type of �mainly� dendritic synapse b, where b
distinguishes both the incoming neural population and the
neurotransmitter type of the receptor. Thus we write �17�

Va�r,t� = �
b

Vab�r,t� , �1�

where r denotes the spatial coordinates, t the time, the sum-
mation is assumed to be linear, and all potentials are mea-
sured relative to resting �15�. For moderate perturbations
relative to a steady state, the value of the reveral potential
can be subsumed into the values of other parameters, by
means discussed in a previous analysis �15�; more generally,
it could be retained as a separate term, but we do not do so
here. Geometrically, the cortex is approximated as a two-
dimensional sheet and r is assumed to be the actual position
in the case of the cortex; many other structures, such as the
thalamus, are linked to the cortex via a primary topographic
map, that links points in a one-to-one manner between struc-
tures; we assign the same value of r to such points. Hence, in
structures other than the cortex, this dimensional map coor-
dinate r denotes a rescaled physical dimension �i.e., the
physical coordinate multiplied by the ratio of the cortical
scale to the structure’s scale�, a point that must be remem-
bered when considering values of spatial parameters in these
structures. An alternative approach would be to rescale coor-
dinates in each structure by dividing by its linear scale,
thereby again leading to a fixed common range of r, but
dimensionless coordinates in this case. In what follows, all
positions are given in dimensional map coordinate units, un-
less otherwise stated.

The subpotentials Vab respond in different ways to incom-
ing spikes, depending on their synaptic dynamics �ion-
channel kinetics, diffusion in the synaptic cleft, etc.�, and on
subsequent signal dispersion in the dendrites. The resulting
soma response to a �-function input at the synapse can be
approximated via the differential equation �10�

Dab�r,t�Vab�r,t� = Pab�r,t� , �2�

Dab�r,t� =
1

�ab�r,t��ab�r,t�
d2

dt2

+ � 1

�ab�r,t�
+

1

�ab�r,t�� d

dt
+ 1, �3�

where Pab is a weighted average number of incoming spikes

arriving at r and t; this quantity is discussed in detail in Sec.
II C. The parameter �ab is the mean decay rate of the soma
response to a �-function synaptic input, while �ab is the
mean rise rate: this biexponential form has been widely
found to be a good approximation �10,25–27�.

If the �ab and �ab are independent of b �which is not
usually true�, then the subscript b on Dab can be omitted and
Va itself satisfies Eq. �2� with the right side of Eq. �2� re-
placed by the sum of Pab over b, as in most of our earlier
works. This approximation is also valid if � and � are inter-
preted as effective values, averaged over subpopulations.

B. Pulse generation

In cells with voltage-gated ion channels, action potentials
are produced at the axonal hillock in response to the soma
potential exceeding some threshold �a. When averaged over
a population of neurons with normal response characteristics,
a reasonable approximation for the firing rate Qa has been
found to be

Qa�r,t� = Qa maxSa�Va�r,t�� , �4�

where Qa max is the maximum firing rate due to normal chan-
nels and Sa is a monotonically increasing function that ap-
proaches zero as Va→−� and unity as Va→�. A commonly
used approximation is

Sa�Va�r,t�� =
1

1 + exp�− �Va�r,t� − �a�r,t�	/�̃a�r,t��
, �5�

where �a is the firing threshold for channels of type a and
�a= �̃a	 /
3 is the population standard deviation of the
threshold.

C. Propagation

Spatiotemporal propagation of pulses within and between
populations determines the values of Pab in Eq. �2� based on
the values of Qb at other locations and earlier times. This is
a key area where we generalize the model by differentiating
between propagators linking different structures, and includ-
ing axonal and dendritic arborization.

1. Propagator formulation

If we assume linear propagation, we can write Pab�r , t� in
terms of an integral over a propagator 
ab�r , t ;r� , t�� for
propagation of activity with the source Qb�r� , t��:

Pab�r,t� =� 
ab�r,t;r�,t��Qb�r�,t��dr�dt�. �6�

The propagator incorporates propagation within axons of the
population b, then transfer to population a via dendritic trees.
Propagators have been used in some instances in brain dy-
namics contexts, particularly in the study of the effects of
volume conduction on signals reaching the scalp from the
brain �7�, and in an earlier paper on gamma oscillations �14�,
which used an insufficiently detailed physiological model,
and did not distinguish sufficiently between all the projec-
tions originating from a given neural population.
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We can rewrite Eq. �6� in the form

Pab�r,t� =� �a�r,t;r�,t���̃ab�r�,t�;r�,t��

 Qb�r�,t��dr�dt�dr�dt�; �7�

here, �̃ab governs propagation within population b from the
source to the point r� , t� of a synapse with population a,
while �a governs the subsequent propagation along connec-
tions between the populations, including along the dendritic
trees of cells a to a soma location r , t.

The index a in Eqs. �6� and �7� includes all populations
whose activity can be affected by incoming stimuli. For in-
puts of external stimuli Qb the index b can also label stimu-
lus types �e.g., left and right eye, color, etc., with a separate
value of b for each type of stimulus�. This separation of
stimuli into subtypes is necessary to allow for competition in
development and learning, but can be dispensed with in ap-
plications where this distinction is not relevant. This split
does not incorporate feedback from the brain to the sensory
cells, but such an effect could easily be included by treating
all nervous system structures on the same formal footing.
Noise inputs to all neural populations can also be included
via this approach, to model either random external stimuli or
statistical fluctuations in spike rate.

A useful form of Eq. �7� is obtained by incorporating the
spatial spread of the function �a into a factor �ab that also

includes the spatial propagation implicit in �̃ab, while keep-
ing information on discrete time delays �ab�r , t� between re-
motely situated populations separate from a local coupling-
strength factor �ab. This yields

Pab�r,t� = �ab�r,t� � ��t − t����t� − t� − �ab�r,r�,t��

 �ab�r,t�;r�,t��Qb�r�,t��dt�dr�dt� �8�

=�ab�r,t� � ��t − t� − �ab�r,r�,t��

 �ab�r,t;r�,t��Qb�r�,t��dr�dt� �9�

=�ab�r,t��ab�r,t − �ab�r,r�,t�� �10�

=�ab�r,t��ab�r,t� , �11�

where comparison of Eqs. �9� and �10� defines the pulse
density field �ab that comprises signals from population b to
a. Thus, the dimensionality of the integration has been
halved, from 6 to 3, and the nonlocal form of �a has been
replaced by the simpler, local �ab, at the cost of introducing
additional propagators to incorporate the different degrees of
convergence and divergence. Equation �10� encapsulates
propagation from soma location to soma location of a field
generated immediately by Qb but impinging on the target
population a only after a delay �ab. The alternate form �11�
pictures the influence of Qb generating the field �ab at the
target only after the delay �ab. The latter picture is more
compact for numerical implementation involving N popula-

tions because it requires storage only of N fields Qb, rather
than the N2 fields �ab, during the delay �ab.

A reasonable approximation for the propagator �ab is to

retain the same form as the axonal propagator �̃ab, but to
modify the effective range rb of the propagator to account for
it now incorporating both the coordinate divergence hab of
axons traveling from b to a and the extent of arborization da
of dendritic trees of type a, giving an approximate range

rab = �hab
2 + da

2�1/2. �12�

�Note that this quantity is expressed in map coordinate units
at the target population a.� These results contrast with the
analyses in our previous works �cited in Sec. I�, in which the
propagation �and, hence, �ab in the propagator notation used
in the present work� was assumed to have the same form for
all a for given b—a good approximation for intracortical
propagation, but not as accurate for corticothalamic projec-
tions, for example, which are less divergent �28�.

The function �ab can be written

�ab�r,t� = Nab�r,t�sab�r,t� , �13�

where Nab is the mean number of connections from cells of
type b per cell of type a and sab is their mean strength.

One very important point is that the arborization, diver-
gence, and range above are measured in coordinate units, not
physical lengths: these are equal only for the cortex, with a
scale factor for other structures.

2. Propagators and wave equations

The propagator �ab in Eq. �9� incorporates propagation
within a population as well as additional spreading due to
convergence and divergence of connections between popula-
tions. To a reasonable approximation, we treat the latter as
modifying the characteristic range of the former, via Eq.
�13�.

A substantial body of work has shown that, to a good
approximation, signals propagate within a population as if
governed by a damped wave equation and, hence, that a
wave propagator can be used �7,10–13,15,16,21�. This has
the major advantage of enabling the propagation of �ab to be
treated in differential form, rather than via the integral equa-
tion �9�.

For an isotropic damped wave equation of the form

� 1

�ab
2

�2

�t2 +
2

�ab

�

�t
+ 1 − rab

2 �2��ab�r,t� = Qb�r,t� , �14�

we find

� 1

�ab
2

�2

�t2 +
2

�ab

�

�t
+ 1 − rab

2 �2��ab�r,t� = Qb�r,t − �ab�r,t�� ,

�15�

where �ab=vab /rab is the temporal damping coefficient
and vab is the wave velocity in coordinate units. Equation
�14� is also satisfied if �ab is replaced by �ab

�0��r−r� , t− t��
and the right side is replaced by a source of the form
��r−r����t− t��. This gives

PROPAGATOR THEORY OF BRAIN DYNAMICS PHYSICAL REVIEW E 72, 011904 �2005�

011904-3



�ab
�0��k,�� =

1

�k2 + q0ab
2 �rab

2 , �16�

q0ab
2 rab

2 = �1 − i�/�ab�2. �17�

Equation �15� emphasizes the more compact implementation
possible if �ab is used in place of �ab in numerical calcula-
tions. Fourier transformation of Eq. �16� yields the
coordinate-space propagator, while its reciprocal is the dis-
persion operator, which is also obtainable by Fourier trans-
forming the contents of the square brackets in Eq. �14� di-
rectly.

Significantly, the form �16� enables very diffuse �i.e., not
topographically specific� connections between populations to
be handled straightforwardly, simply by increasing rab while
reducing �ab, thereby allowing influences to propagate long
distances with little damping. When computing �ab for
propagation between remote populations, one must be care-
ful to allow for the actual geometry of the axonal tree, a
point to which we return in the Appendix.

3. Parameters

The above equations contain a number of parameters of
physiology and anatomy. In general, these can vary in both
space and time; however, we restrict the analysis here to
spatial variations. This does not preclude treatment of tem-
poral variations on time scales much longer than those of
variations in neural activity. Specific values for one model
are discussed in Sec. V and the Appendix.

III. STEADY STATES AND GLOBAL DYNAMICS

Previous work has shown that a great variety of properties
of brain electrical activity can be obtained by treating activ-
ity changes as being perturbations of a steady state �11,21�.
Spatially uniform steady states can be obtained by solving
the preceding equations with all time and space derivatives
set to zero, assuming that the parameters are spatially con-
stant. �Spatially nonuniform steady states are also possible,
and of significant interest, but we do not consider them here.�
The spatially uniform steady states are thus the solutions of
the set of equations

Qa = Sa��
b

�abQb , �18�

which are generally transcendental in form. Partial deriva-
tives of the solutions of Eq. �18� with respect to the param-
eters can be used to probe their zero-frequency stability, and
to help determine the most suitable control parameters for
state modification.

Much of the dynamics of brain electrical activity occurs at
relatively large spatial scales, and the largest scales are often
the least stable �and, hence, the most active� �10,11�. Global
dynamics can be probed in the uniform-parameter case by
assuming that all the parameters are spatially constant and
setting all spatial derivatives in the equations of Sec. II to
zero. This enables the time derivatives to be replaced by
ordinary derivatives, yielding a set of ordinary delay differ-

ential equations for the global activity. Such equations have
proved useful for studying the dynamics of generalized epi-
leptic seizures; for example �11�.

IV. LINEAR AND COUPLED-MODE PROPERTIES

We can study many properties of brain activity by linear-
izing the equations of Sec. II around an assumed steady state.
Here we allow for coupling of uniform-medium modes via
spatial variations of the model parameters. We do not assume
that the activity is uniform or constant.

A. Linear equations for activity

Of the relevant equations in Sec. II, Eqs. �1�, �2�, �9�, and
�14� or �15� are already linear. Equation �4�, which is needed
to close the set, can be linearized by replacing the sigmoid Sa
by its slope �a at the assumed steady state value of Va. If we
Fourier transform the resulting set of linear �in the fields�
equations in time, we find for the fluctuating parts

Qa�r,�� = �a�r�Va�r,�� , �19�

Va�r,�� = �
b

Vab�r,�� , �20�

Vab�r,�� = Lab�r,��Pab�r,�� , �21�

Lab�r,�� = �1 − i�/�ab�r��−1�1 − i�/�ab�r��−1, �22�

Pab�r,�� = �ab�r�ei��ab�r��ab�r,�� , �23�

�ab�r,�� =� dr��ab�r − r�,��Qb�r�,�� , �24�

where we have assumed that all the parameters of the equa-
tions �but not the fields of activity� are constant on the time
scales of interest. The spatial dependence of the parameters
in Eqs. �19�–�24� couples the modes of the uniform-
parameter system in a manner similar to quantum time-
independent perturbation theory �17�.

For any given r and �, the above linear equations can be
rearranged to obtain

Qa�r,�� = �
b

Jab�r,�� � dr��ab�r − r�,��Qb�r�,�� ,

�25�

Jab�r,�� = Lab�r,��Gab�r�ei��ab�r�, �26�

where the gains are defined by Gab�r�=�a�r��ab�r�.
If we spatially Fourier transform Eq. �25�, we find the two

equivalent convolutions

Qa�k,�� = �
b
� dq

�2	�2Jab�q,���ab
�0��k − q,��

Qb�k − q,�� , �27�

P. A. ROBINSON PHYSICAL REVIEW E 72, 011904 �2005�

011904-4



=�
b
� dq

�2	�2Jab�k − q,���ab
�0��q,��

Qb�q,�� . �28�

The existence of the primary topographic mapping is critical
to obtaining the two equivalent forms �27� and �28�, since it
allows us to parametrize all the populations in terms of a
single position coordinate and wave vector �it does not, how-
ever, require connections to be topographically one to one�.
Rescaling of the position vector is necessary to obtain di-
mensional physical locations in a given population. If the Jab
are independent of position, only q=0 need be included in
Eq. �27�, or q=k in Eq. �28� �i.e., Jab�q ,��
= �2	�2Jab�����q��, which yields

Qa�k,�� = �
b

Jab����ab
�0��k,��Qb�k,�� , �29�

where the redundant argument has been omitted in Jab���,
which has the same dimensions as Jab�k ,��dq.

Returning to the spatially dependent case, we can replace
the integral over q in Eq. �28� by a sum over discrete q, to
arbitrary accuracy, yielding

�
bq

�ab�kqQb�q,�� = �
bq

Cab�k,q,��Qb�q,�� , �30�

Cab�k,q,�� = Jab�k − q,���ab
�0��q,�� . �31�

If there are N� neural populations in the system being con-
sidered, and J stimulus sources, and we assume that there is
no feedback of stimuli on themselves or of the brain on
stimuli �as discussed in Sec. II C 1�, then the matrix C is
�N�+J� �N�+J� in size, but the bottom J rows are zero.
Hence, Eq. �30� can be written in the form

�
bq

Aab�k,q,��Qb�q,�� = �
jq

Baj�k,q,��Nj�k,�� , �32�

Aab�k,q,�� = �ab�kq − Cab�k,q,�� , �33�

and Baj�k ,q ,��=Caj�k ,q ,��, where b denotes neural popu-
lations, j denotes external stimulus types, and Nj has been
used in place of Qj for the J stimulus types to make the
distinction between population firing rates and incoming
stimulus pulse rates absolutely clear. The matrix A is
N�N� in size, while B has N� rows and J columns; the
column matrix N has J elements, while the remaining col-
umn matrix Q now has N� elements. In the case that only
q=k is retained, the eigenmodes are spatially uniform and
independent, and Eqs. �30� and �31� become

�
b

Aab�k,��Qb�k,�� = �
j

Baj�k,��Nj�k,�� , �34�

Aab�k,�� = �ab − Cab�k,�� , �35�

Bab�k,�� = Jab����ab
�0��k,�� , �36�

where the factors in Eq. �36� are defined in Eqs. �16� and
�26�.

It is useful to write Eq. �32� in matrix notation. To do this,
one must establish a one-dimensional ordering of b and k or
q to use to label the rows and columns. Discussion of how to
order the spatial modes for one- �1D� and two-dimensional
�2D� coordinate spaces was given elsewhere �17�. If there are
N� populations, J stimulus sources, and wave number modes
are truncated to run from −Mmax to Mmax in each dimension,
then in 2D, the mode with wave vector �in a rectangular
topology with periodic boundary conditions�

k = �2	mx

lx
,
2	my

ly
 , �37�

where mx and my are integers and lx and ly are the linear
dimensions of the cortex, maps to the row or column index

��a,mx,my� = 1 + �mx + Mmax� + �my + Mmax��2Mmax + 1�

+ �a − 1��2Mmax + 1�2. �38�

This index runs from 1 to Y =N��2Mmax+1�2 when a refers
to a neural population, and from 1 to Z=J�2Mmax+1�2 where
it refers to a stimulus type.

Using Eq. �38� we can write Eq. �32� as

�
�

A��Q� = �
�

B��N�, �39�

or, more simply, as the matrix equation

AQ = BN , �40�

where A is a Y Y square matrix, Q is a Y 1 column
matrix, B is a Y Z rectangular matrix, and N is a Z1
column matrix.

We can immediately invert Eq. �40� to find Q in terms of
the stimuli N:

Q = TN , �41�

where T=A−1B is the Y Z rectangular transfer matrix of
the system. The element Tab is the response of Qa at some k
and � to a change in Nb at the same frequency and some
�possibly different� wave vector.

B. Observables

A measurable scalar quantity � �which could be a com-
ponent of a vector� may well be able to be approximated by
a linear combination of the Qa �e.g., a scalp potential may
involve contributions from several cellular populations, with
various weights�. In this case, at a given �,

���� = MQ = MTN , �42�

where M is a row vector of measurement coefficients, com-
plex valued in general to include spatiotemporal filtering
characteristics, phase shifts, etc.

Among key observables are the individual fields in k
space or coordinate space. For example, the coefficients of
the matrix M can be chosen such that

���� = �ab�r,�� = �
k

�ab�k,��eik·r. �43�

Further classes of measurement functions are those relating
the neural activity to local field potentials, multiunit activity,
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the blood oxygen level dependent response that forms the
basis of functional magnetic resonance imaging, or the meta-
bolic responses underlying positron emission tomography, or
single-photon emission computed tomography, for example.

In general, the use of a measurement matrix fits well with
measurement and control theory. Use of a similar input ma-
trix to relate raw stimuli to those that reach the brain would
also enable preprocessing �e.g., retinal� of stimuli to be
treated under the same formalism.

C. Dispersion and stability

The dispersion relation of linear waves in the system is
given by

det A�k,�� = 0, �44�

and the system is stable at a particular real k if all the fre-
quency roots of this equation have negative imaginary part.
If the steady state is stable for all k, the spectra and other
properties of the linear perturbations can be self-consistently
defined.

D. Spectra

The power spectral density of � at k and � is

P�k,�� = ���k,���2 = �MkTN�2, �45�

where Mk is defined so as to project out only the k compo-
nent of �. The frequency and wave number spectra are then

P��� =� d2k

�2	�2 P�k,�� , �46�

P�k� =� d�

2	
P�k,�� . �47�

A position-dependent spectrum can be calculated from Eq.
�43�.

V. APPLICATION TO THE CORTICOTHALAMIC
SYSTEM

This section is devoted to an illustrative application to the
corticothalamic system. We first improve the representation
of propagators in the model of brain dynamics developed in
our previous papers �10–12,15–17�. We then explore the
spectral properties of the improved model, including the ex-
istence of an additional resonance in the gamma band
��30 Hz� when the improved propagators are introduced. In
order to focus on the key propagator physics, we concentrate
on signals at the cortical surface �electrocorticograms, or EC-
oGs�; the effects of volume conduction must also be included
when considering signals recorded at the scalp.

A. Improvement to propagators in a previous model

In previous studies we introduced a model of the cortex
and thalamus, including separate cortical excitatory �e�, mid-
range excitatory �m�, and short-range inhibitory �i� popula-
tions, plus both the reticular �subscript r� and specific relay

�s� thalamic nuclei; we term this the EMIRS model for con-
venience. Figure 1 shows the connectivities in this model.
Within the cortex, random connectivity was assumed, imply-
ing that all the gains Gcb are equal for fixed b, with c and c�
denoting cortical populations �e, m, or i�. We also assumed a
common sigmoidal function.

We illustrate the differences involved in introducing more
general propagators via their effects on the linear EEG spec-
trum. Using the analysis in Secs. II and IV we calculate the
matrices A, B, and T=A−1B. Selecting the element of T that
relates �ee to the thalamic inputs �sn then yields the linear
transfer function

�ee�k,��
�sn�k,��

=
KesKsn

k2ree
2 + q0ee

2 ree
2 ��1 − KsrKrs��1 − Kee − Kem − Kei�

− Kes�Kse + KsrKre��−1, �48�

Kab = Kab�k,�� = Jab����ab
�0��k,�� , �49�

where Eq. �49� defines Kab via Eqs. �16� and �26�.
In the Appendix we estimate the parameters in this model,

which are summarized in Table I. Using these parameters, we
can make the following approximations for some of the
propagators, provided krab�1 and ���ab in each case:
�ci

�0��1, �cm
�0��1, and �cs

�0��1 for all cortical components c,

�sr
�0���rs

�0�=1, and finally �re
�0���se

�0��1. In this regime in the
absence of a mid-range population m, the main qualitative
difference from previous work is that we cannot set �se

�0�

=�ee
�0�, as was done implicitly before �the present result re-

produces the previous one if this is done�, since corticotha-
lamic projections are more topographically localized than
corticocortical ones �24,28�. The most significant quantita-
tive differences from the previously used parameters �also
summarized in Table I� are in the damping rates �ei, �rs, and
�sr, which no longer greatly exceed the highest frequencies
of interest in EEG and ECoG applications, �100 Hz. In the
next subsection, we show that �ei can have a significant ef-
fect on waves in the gamma frequency range ��30 Hz�.

Using the above values for the propagators, we find

FIG. 1. Schematic of the connectivities in the model corticotha-
lamic system used in Sec. V. The cortical populations �c ,c�
=e ,m , i�, reticular nucleus �r�, and relay nuclei �s� are shown. Also
shown are pulse-rate fields �ab that propagate from population b to
population a, including external inputs �sn.
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�ee�k,��
�sn�k,��

=
JesJsn

k2ree
2 + qee

2 ree
2

1

�1 − JsrJrs��1 − Jem − Jei�
,

�50�

qee
2 ree

2 = �1 − i�/�ee�2 −
1

1 − Jem − Jei

�Jee +
Jes�Jse + JsrJre��se

�0�

�1 − JsrJrs��ee
�0� � �51�

at low k, where the arguments of the Jab have been omitted
for compactness in Eqs. �50� and �51�. In previous work �ee

�0�

and �es
�0� canceled in the final term, leaving the only depen-

dence on k to be that in the first denominator on the right in
Eq. �50�.

Equations �50� and �51� can be rearranged to isolate the
terms that depend on k, which is useful when integrating
over k to obtain quantities such as frequency spectra, since
the integrals then have a simple form �integrals over � can
only be done in closed form in highly restrictive special
cases�. In the case where �se

�0��1, which is a reasonable ap-
proximation for small to moderate k, one finds

�ee�k,��
�sn�k,��

=
JesJsn

k2ree
2 + pee

2 ree
2 ��1 − JsrJrs��1 − Jem − Jei�

− Jes�Jse − JsrJre��−1, �52�

pee
2 ree

2 = �1 − i�/�ee�2

−
Jee

1 − Jem − Jei − Jes�Jse + JsrJre�/�1 − JsrJrs�
.

�53�

B. Spectra

Previous work has shown that the assumption of approxi-
mately white noise inputs to the corticothalamic system
gives good agreement with a range of experimental data on
EEGs and ECoGs, including spectra �10–13,15–19,21�,
which are predominantly generated by long-range excitatory
neurons in the cortex �6,7,29�. Here we explore the spectral
properties of our system on this assumption to probe the
effects of the improved propagators.

Figure 2�a� shows the frequency spectrum Pee�f�, where
f =� /2	, estimated by integrating the squared modulus of
Eq. �48� over k for the old parameters in Table I. As in
previous work, the frequency spectrum shows the alpha and
beta resonances, which are due to corticothalamic resonances
near 10 and 20 Hz, respectively, in this theory �11,16�. There
is a leveling off at low f , a 1 / f spectrum at roughly 2–6 Hz,

TABLE I. Illustrative brain parameters for normal adults in the
alert, eyes-open state. The first column gives a brief description of
the parameter, with its symbol listed in the second. The third and
fourth columns give the estimates of the new parameters used in
Sec. V and those used in previous studies, respectively, while the
unit of each quantity is given in the final column. Only nonzero
values for connections that are retained here are listed. All the rab

and vab values are estimated for the visual system and are given in
terms of dimensional map coordinate units and must be multiplied
by the scale of the target structure relative to the cortex �0.1 for the
human thalamus, as discussed in the Appendix� to obtain actual
physical values. All the synaptodendritic rates have been assumed
equal, regardless of a and b, and the index c denotes cortical popu-
lations e ,m , i. The reason for sum Gcm+Gci appearing in the second
column is that only the sum of these two quantities has been deter-
mined with reasonable accuracy in previous human studies. The
quantities rcm, vcm, and �cm did not occur in the old version.

Quantity Symbol Estimate Old Unit

Propagation delays �re ,�se 43 43 ms

�cs 43 43 ms

Synaptodendritic rates �ab 80 80 s−1

�ab 800 800 s−1

Gains Gce 6.8 6.8

Gcm+Gci −8.1 −8.1

Gcs 1.7 1.7

Gre 1.0 1.0

Grs 0.19 0.19

Gse 2.5 2.5

Gsr −1.9 −1.9

Gsn 0.8 0.8

Projection ranges rce 85 85 mm

rcm 2 n.a. mm

rci 0.2 0.3 mm

rre ,rse 1.2 85 mm

rcs 0.3 �0.3 mm

rrs 1.2 �0.3 mm

rsr 1.2 �0.3 mm

rsn 1.2 �0.3 mm

Projection velocities vce 10 10 m s−1

vcm 1 n.a. m s−1

vci 0.3 10 m s−1

vre ,vse 36 10 m s−1

vcs 3.6 10 m s−1

vrs 2 10 m s−1

vsr 2 10 m s−1

vsn 70 10 m s−1

Damping rates �ce 120 120 s−1

�cm 500 n.a. s−1

�ci 1500 3105 s−1

�re ,�se 3104 120 s−1

�cs 1.2104 �3105 s−1

�rs 1700 �3105 s−1

�sr 1700 �3105 s−1

TABLE I. �Continued.�

Quantity Symbol Estimate Old Unit

�sn 6105 �3105 s−1
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and a steepening at high f , caused by the onset of synapto-
dendritic low-pass filtering �10,11,16�. The corresponding
wave number spectrum falls off at k�1/ree, with a plateau
developing below this point, also as found in previous work
�18,19�. These aspects encapsulate key features of the com-
bined frequency–wave number spectrum Pee�k ,�� shown in
Fig. 2�c�, which also shows that the spectrum extends fur-
thest along the line �=kvee, where damping is least �10�.
Incidentally, the spectrum of the firing rate Qe extends to
much higher k because the first denominator on the right of
Eq. �48� is absent in this case. This leads to obscuring of the
spectral peaks in the corresponding frequency spectrum of
Qe. Hence, the reason that these peaks are visible in Fig. 2�a�
is spatial filtering by long-range propagation �volume con-
duction would have a similar effect�.

Figure 3 is analogous to Fig. 2, except that the new ranges
rab have been included, from Table I �with the old velocities
vab�. This has the effect of sharpening the spectral peaks
somewhat, chiefly because the smaller values of rse and rre
make the corticothalamocortical connections more specific.
Inspection of the corresponding spectra �not shown� for

fields in the relay nuclei reveals that they are less concen-
trated at low k because of the shorter ranges of the cortico-
thalamic input fibers.

Figure 4 has the same parameters as Fig. 2, except that the
new velocities have been used �with the old ranges�. This
change leaves the frequency spectrum almost unaltered, apart
from the appearance of an enhancement at around 80 Hz in
the gamma range. There is a slight corresponding distortion
at k�60 m−1 in the k spectrum in Fig. 4�b�, and a noticeable
enhancement at these coordinates in the combined spectrum.
Examination of other spectra shows a strong feature in the
spectrum Pei�k ,��, but nothing noticeable in the thalamic
spectra, thereby indicating that this is a cortical phenomenon.
We analyze it in the next section.

Figure 5 is plotted for the new ranges and velocities. We
see both a strengthening of corticothalamic resonances, and
the presence of the cortical gamma enhancement relative to
Fig. 2. In interpreting Fig. 5 in conjunction with data, it is
important to note that the parameters would need to be reop-
timized slightly in each case to achieve the best possible
match.

FIG. 2. Spectra of �ee obtained from the corticothalamic model
with the old parameters from Table I and no m population. �a�
Frequency spectrum Pee�f�. �b� Wave number spectrum Pee�k�. �c�
Frequency–wave number spectrum Pee�f ,k� with dark shading in-
dicating high values, logarithmically spaced in half decades from a
minimum of 10−6. The curve �=kvee is shown dashed.

FIG. 3. Spectra of �ee for the old parameters from Table I, but
the new rab, and no m population. �a� Pee�f�. �b� Pee�k�. �c� Pee�f ,k�
with shading as in Fig. 2 and dashes showing �=kvee.
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C. Gamma resonance

We next determine the nature of the gamma enhancement
seen in Figs. 4 and 5. Filtering in the corticothalamocortical
loops suppresses their effects in this frequency range, ex-
plaining the cortical nature of this phenomenon. If we ignore
the thalamic terms in Eq. �48�, the resonance in question
proves to arise from a zero of the term 1−Kee−Kem−Kei,
involving relatively high k ��1/ree� and �. If we ignore the
mid-range population for now �as in Figs. 2–5�, note that
�Kee�� �Kei� at high k and �, and assume that all the �ab and
�ab are independent of a and b �which allows us to omit the
subscripts on these quantities�, the resonance underlying the
gamma enhancement is determined by the equation Kei=1,
which is equivalent to

Gei = �1 − i�/���1 − i�/���k2rei
2 + �1 − i�/�ei�2� . �54�

At marginal stability �i.e., exact resonance�, the frequency
and wave vector are real and the real and imaginary parts of
Eq. �54� at moderate to low k �but not so low that Kee must
be retained� become

�1 − �2/����1 − �2/�ei
2 � − 2�2�� + ��/���ei = Gei,

�55�

���� + ���1 − �2/�ei
2 �/�� + �2/�ei��1 − �2/���� = 0,

�56�

respectively. One solution of Eq. �56� is at �=0, in which
case Eq. �55� has the solution Gei=1, which is unphysical,
since Gei is negative; in previous publications, an approxi-
mation equivalent to �ei=� was made, which allowed only
this unphysical solution. The other solution of Eq. �56� is

�2 =
�ei�2�� + ��ei + ��ei�

� + � + 2�ei
, �57�

which increases monotonically with �, �, and �ei and satis-
fies min�� ,�ei	���max�� ,�ei	. Equations �55� and �57�
yield

Gei = −
2��� + ����1 + ���2�1 + ���2

������� + �� + 2�2 , �58�

with ��=� /�ei and ��=� /�ei. Equation �58� gives the value
for exact resonance where Eq. �48� diverges. Such a reso-
nance is possible only if �Gei� exceeds a critical value, below
which there is a spectral enhancement at frequencies ap-
proximately given by Eq. �57�. Symmetry of �� and �� in

FIG. 4. Spectra of �ee for the old parameters from Table I, but
the new vab, and no m population. �a� Pee�f�. �b� Pee�k�. �c� Pee�f ,k�
with shading as in Fig. 2 and dashes showing �=kvee.

FIG. 5. Spectra of �ee for the new parameters from Table I and
no m population. �a� Pee�f�. �b� Pee�k�. �c� Pee�f ,k� with shading as
in Fig. 2 and dashes showing �=kvee.
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Eq. �58� implies that this value lies where ��=��, whence it
is easily shown that the minimum magnitude of the right side
of Eq. �58� is 4, and this occurs when �=�=�ei, giving �
=�. If krei�1, a similar analysis implies

�2 = �� , �59�

Gei = − �� + ��2k2rei
2 /�� , �60�

which implies �Gei��4 for exact resonance.
For the parameters in Table I, we predict resonance at f

=120 Hz and Gei=−16 for krei�1, and at f =40 Hz and
�Gei��12 in the opposite case. The cortical nature of the
resonance and its approximate frequency accord with the re-
sults in Fig. 5�c�. Agreement of the predictions with numer-
ics is more easily seen in Fig. 6, where we show correspond-
ing results for Gei=−16 and the other parameters as in Table
I �with no m population�. The resonant frequency and critical
gain agree well with the predictions �57� and �58� although
the frequency downshift is truncated by low-pass filtering in
k and is thus seen chiefly in the spectrum Pei�k ,�� in Fig.
6�d�. The latter feature leads to the appearance of a weak
peak in P�k� at k�60 m−1 in Fig. 6�b�. One further point is
that the spectral enhancement actually extends to very small
k, where Kee cannot obviously be neglected; the analysis is
thus more general than expected.

Spectral enhancements of cortical EEG activity in the
30–70 Hz gamma range have been widely observed in con-
nection with perception �30�. It is thus of considerable inter-
est to determine whether the resonance identified above
could be responsible for these enhancements. Likely ranges
rei=0.1–0.3 mm and vei=0.1–0.4 m s−1 imply �ei
=330–4000 s−1. Together with likely waking ranges of �
=80±15 s−1 and �=800±200 s−1 �21�, Eq. �57� implies a
resonant frequency in the range 40–230 Hz, which overlaps
most of the observed one.

The points raised in the above discussion are consistent
with the resonance identified here being responsible for ob-
served gamma enhancements, with one exception: intracellu-
larly observed gamma oscillations often display fine struc-
ture down to scales of a few tenths of a millimeter �k
�6000 m−1� �30�, whereas our spectra �even of Qe, where
spatial filtering cuts in strongly only at k�3000 m−1� are
very broad in k. This point remains to be resolved before any
positive conclusion regarding the connection to gamma os-
cillations can be reached; however, we speculate that known
mesoscopic structure at the relevant scales �7,24–26,30� may
lead to stronger k dependence in the appropriate range.

Incidentally, intracortical resonances involving ei and ii
loops �both subsumed under the ei subscripts here, via the
random connectivity approximation� have been suggested as
the mechanism underlying alpha activity at about 10 Hz.
Leaving aside problems associated with the neglect of corti-
cothalamic loops in such models, the above analysis leads to
a requirement for unrealistically low waking values of �, �,
and �ei �all less than 60 s−1� for such mechanisms to be
feasible.

D. Effects of intermediate-range cortical neurons

Figure 7 shows the effect of adding a mid-range popula-
tion m of excitatory cortical neurons, with the parameters
shown in Table I, with Gem=7.9 and Gei=−16 to keep the
sum of these two gains equal to −8.1. Comparison with Fig.
5 shows a more prominent gamma enhancement in Fig. 7�a�,
due to the higher value of �Gei�; this enhancement is also seen
in Figs. 7�b� and 7�c�. However, this is not as prominent as in
Fig. 6 because the term Kem cannot be neglected in Eq. �48�,
and its gain factor has the opposite sign to the one in Kei �if
the two ranges were equal, there would be no change from

FIG. 6. Spectra of �ee and �ei for the new parameters from
Table I, but Gei=−16, and no m population. �a� Pee�f�. �b� Pee�k�.
�c� Pee�f ,k�, with shading as in Fig. 2 and dashes showing �
=kvee. �d� Pei�f ,k� in the same format as �c�, but with �=kvei

shown dashed.
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Fig. 5; if rem were much greater than rei, Kem could be ig-
nored and the situation would be as in Fig. 6�. The wave
number spectra in Figs. 7�d�–7�f� display characteristic cut-
offs at the reciprocals of the respective axonal ranges
�18,19�, with weak low-k features in Pem�k� and Pei�k� that
result from driving by the e neurons. Figures 7�h� and 7�i�
show a distinct, but weak, peak in the spectra Pem�k ,�� and
Pei�k ,��, but this feature is not seen in analogous spectra of
Qa �not shown�. �Note that the spectra Pca have the same
form for all cortical populations c if a is fixed.� This implies
some spatial structure corresponding to k�1000 m−1 and
��kvem or �=kvei, respectively. For the correct combina-
tion of observed scale ��1 mm� and frequency ��40 Hz� to
be achieved by this mechanism, one would require the rel-
evant axonal velocity to be around 0.04 m s−1, which is too
low to be realistic �31�.

VI. SUMMARY

A generalized, propagator-based, continuum treatment of
brain dynamics has been developed, enabling arbitrary num-
bers of neural populations to be included, with distinct signal
propagation characteristics between each pair of populations.
Mesoscopic structure associated with neural arborization is
included and widely converging or diverging projections can
be treated. The predictions of the theory are expressed in
terms of a moderate number of physiologically constrained
parameters. The linear properties of the system have been
explored for the case where underlying parameters are uni-
form across the brain.

As an illustrative application of the theory, it is used to
improve treatment of signal propagation in a corticothalamic
model that has been applied to explain a range of EEG and
ECoG data in recent years. It is shown that more realistic
corticothalamic propagators can lead to sharpening of the

corticothalamic resonances that underly major brain rhythms,
such as the alpha rhythm. More accurate analysis of cortico-
cortical propagators can also lead to spectral enhancements
in the gamma range, which arise from feedback loops in-
volving slow, short-range, inhibitory fibers. Similar loops
may occur in thalamic relay nuclei, which contain inhibitory
interneurons in some species �28�.

Physiologically realistic propagator parameters yield reso-
nances in the observed gamma frequency range, but rela-
tively broadly distributed in wave number, without the strong
wave number structure that would account for observed spa-
tial structure on scales of �1 mm for realistic axonal veloci-
ties. It is speculated that this structure may arise from well-
known mesoscopic anatomical nonuniformities at this scale,
which cannot be treated using uniform-medium propagators.
It appears that the 10 Hz waking alpha rhythm cannot be
generated by this mechanism for realistic parameter values.
This is consistent with �15 Hz spindle generation during
sleep via a related mechanism in the thalamus, because of the
much lower values of � and � for the relevant neurotrans-
mitters in that case �11,13,21�.

Another area where the analysis developed here is appli-
cable is treatment of the cortex as a multilayered structure �it
has six main layers�, rather than as a single layer with
effective-medium properties, using different signal propaga-
tion characteristics to and from each layer. The effects of
diffuse projection systems of the thalamus can also be stud-
ied, and incorporation of the basal ganglia, limbic system,
brainstem, and other structures into modeling will be facili-
tated by the general formalism developed here.
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FIG. 7. Spectra of �ee for the
new parameters from Table I, with
Gem=7.9 and Gei=−16. �a�–�c�
Frequency spectra Pee, Pem, and
Pei. �d�–�f� Wave number spectra
Pee, Pem, and Pei. �g�–�i�
Frequency–wave number spectra
Pee, Pem, and Pei, with shading as
in Fig. 2 and dashes showing �
=kvee, �=kvem, and �=kvei,
respectively.
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APPENDIX: ESTIMATION OF PARAMETERS

In this appendix we estimate typical parameters for illus-
trative use in Sec. V, as summarized in Table I. More detailed
analysis of the physiology would assign somewhat different
individual values to many of these quantities, but the values
in Table I suffice for illustrative purposes.

The first group of parameters in Table I are the mean
propagation delays, synaptodendritic rates, and gains deter-
mined for 100 adult subjects in the waking eyes-open state
by fitting the previous version of the model described in Sec.
V A to EEG frequency spectra �21�. As discussed previously
�12,18,19�, because of its insensitivity to short spatial scales,
this process does not distinguish the gains Gcm and Gci sepa-
rately, only their sum. �See Sec. V D for exploration of the
balance between the two individual values.�

Of the projection ranges, the quantities rce, �ce, vce, vse
=vre=vcs were also estimated in the above study �10�, where
c denotes a cortical population.

For present purposes we need to determine improved val-
ues of the other quantities listed in Table I. Beginning with
the ranges, we note that values in the literature imply rci
�0.2 mm �this is a characteristic range of decrease in a
single direction; the full width of an arbor would be about
three times this value� with rcm�2 mm �24,27,28� at least
for the visual cortex. Estimates of velocities are in the vicin-
ity of vci�0.3 and vcm�1 m s−1 �6,7,24,26,28,31�.

Axonal arborization of thalamocortical fibers corresponds
to a transverse characteristic distance of rcs=0.3 mm �28�,
fanning out near the end of the axon. Hence, the character-

istic time interval over which signals spread this far is
1 /�cs�rcs


2/Vcs, where Vcs�5 m s−1 is the physical veloc-
ity in the thalamocortical fibers �the factor of 
2 assumes an
approximately 45° opening half angle of the axonal tree
where it arborizes�. Writing �ab=vab /rab in the usual way
then yields the effective velocity vcs=3.6 m s−1. A similar
calculation gives vre=vse=36 m s−1, where the extra factor
of 10 represents the ratio of cortical to thalamic scales: since
all quantities are expressed in dimensional map units, tha-
lamic distances, and velocities must be increased by this fac-
tor relative to their physical values. The ratio of 10 is esti-
mated to be the square root of the ratio of cortical area �
1500 cm2 per hemisphere� to the combined cross sectional
area of the nuclei in one-half of the thalamus ��15 nuclei at
�1 cm2 each�. The values of the corticothalamic ranges rre
=rse are set to four times the corresponding thalamocortical
ones, based on physiological estimates �28�; this is less than
the relative scale factor because of somewhat less extensive
physical arborization. The values of �re��se and vre�vse in
Table I are also estimated by the above methods.

Since intrathalamic fibers are not myelinated, we approxi-
mate their physical signal velocities by vsr�vrs�0.3 m s−1,
as for the inhibitory cortical axons. We also assume a similar
degree of arborization to corticothalamic axons. The methods
above then lead to the corresponding velocities and damping
coefficients listed in Table I.

Sensory input fibers are high velocity, so we choose the
fiber velocity vsn=10 m s−1. If we again assume a similar
degree of arborization to corticothalamic axons, we find the
range, velocity, and damping coefficient values listed in
Table I.
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